More of the same for Hawaii tourism?

Updated from slides prepared for the
Pacific Asia Travel Association
Travel and Tourism Research Association
for the Hawaii Economic Association

by Paul H. Brewbaker, Ph.D., CBE
TZ Economics, Kailua, Hawaii
May 3, 2018
Constraints inhibiting Hawaii’s largest export—tourism—contribution to economic growth

1. Long-term (since 1980s) political predisposition to restrain tourism capacity growth
2. Longer-term (since mid-20^{th} century) trend decline in real visitor outlay, partly a consequence of composition changes, but also from productivity growth

- **Tourism was dominant engine** of Hawaii economic growth 1950s – 1980s (30 years)
- **Tourism has yet to return to its absolute** economic position of late-1980s (30 years)

Strategic question for next generation is whether Hawaii’s only plausibly material export will return as growth engine, 2020-2050, or simply consume public resources
Hawaii real tourism receipts per visitor declined on trend (to 2017); last quarter century corresponds with tightening lodging inventory.

Real Japan visitor *daily* outlay eroded—after yen rose from 360 ¥/$ (1973) to 120 ¥/$ (1988)—qualitatively similar trend for mainlanders

More visitors, not more dollars: Hawaii tourism performance

Real tourism receipts per Hawaii resident settled since 1989 peak

Real tourism receipts *per Hawaii resident* (logs) peaked in 1989

A mature destination, Hawaii’s tourism now is characterized less by growth of arrivals, more by (unconditional) volatility: a bad “trade”

Visitor arrivals, millions (log scale)

<table>
<thead>
<tr>
<th>Year</th>
<th>Growth Rate</th>
<th>Volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1922-41</td>
<td>4.0%</td>
<td>18.6%</td>
</tr>
<tr>
<td>1946-74</td>
<td>20.0%</td>
<td>11.7%</td>
</tr>
<tr>
<td>1974-90</td>
<td>5.6%</td>
<td>4.4%</td>
</tr>
<tr>
<td>1990-2017*</td>
<td>1.1%</td>
<td>4.9%</td>
</tr>
</tbody>
</table>

*Annualized growth rate 1990-2007 before the 2008-09 U.S. recession was +0.6 percent, unconditional interval volatility was 4.4 percent

Sources: As in previous slide; interval unconditional volatility estimates are annualized within-period standard deviations of log changes in underlying arrivals
Diverging monetary policy: Japanese and European monetary policy still behind U.S. monetary policy normalization—they’ll catch up

*Prime Minister Abe re-elected December 16, 2012, initiates "Abenomics," endorsing Quantitative Easing.
†QE widely anticipated in financial markets; announced by ECB President Draghi January 22, 2015.

Source: Federal Reserve Bank of St. Louis; data are monthly averages through early-February 2017 (http://research.stlouisfed.org/fred2/series/EXUSEU and http://research.stlouisfed.org/fred2/series/EXJPUS); exchange rates noted are U.S. market closing prices.
Canadian dollars: price of a barrel of oil IS the value of the Loonie
Australian dollars: price of oil, minerals IS the value of the Aussie

Sources: Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org/series/EXCAUS, https://fred.stlouisfed.org/series/EXUSAL) and https://fred.stlouisfed.org/series/MCOILWTICO; seasonal adjustment by TZE
Japanese daily visitor outlay moves inversely with yen/dollar exchange rate: stronger dollar implies lower expenditure

Foreign visitors’ daily outlays, in home currency terms, are an increasing function of their currency’s value in home currency terms. The U.S. dollar’s appreciation, 2012-2016 because of monetary policy divergence, reduced Japanese tourists’ purchasing power in Hawaii during an interval of growth in tourist volumes.

Sources: Hawaii Tourism Authority, Hawaii DBEDT, Hospitality Advisors LLC, Bureau of Labor Statistics, Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org/series/AEXJPUS); seasonal adjustment, deflation using Honolulu CPI-U (quarterly interpolation from semiannual data and annual averages, as appropriate) by TZE.
As value of Canadian dollar declined with oil prices, *growth rate* of Canadian visitor daily expenditure slowed (and level stumbled)

Sources: HTA, Hawaii DBEDT, Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org/series/EXCAUS); seasonal adjustment and regression model of change in natural log of the monthly Hodrick-Prescott filter trend component of daily Canadian visitor outlay on contemporaneous and lagged (12 months) values of the Canadian dollar / U.S. dollar exchange rate by TZE
Until the 1980s, lodging capacity growth was unconstrained; since the 1990s, much of growth is alleged Undocumented Vacation Rentals.

Sources: Hawaii Visitors Bureau, Hawaii DBEDT, Hawaii Tourism Authority (http://www.hawaiitourismauthority.org/research/reports/visitor-plant-inventory/)
Oahu real hotel room rates in 20-teens experienced much sharper (faster) appreciation with higher hotel occupancy than before.

Sources: PKF Hawaii, Hospitality Advisors LLC, Hawaii DBEDT, Bureau of Labor Statistics; seasonal adjustment, room rate deflation using Honolulu CPI-U (quarterly interpolation from semiannual data and annual averages, as appropriate), year-over-year real appreciation rates, and interval regressions calculated by TZE.
In 2010s, Oahu real hotel room rates accelerated at 85% occupancy; in 2000s, incipient acceleration broken by financial crisis, recession.

Frictions in price-setting behavior may explain the early-2000s cycle masking the direct longer-term relationship between real hotel room rates and utilization rates, but the return to 85 percent occupancy during the 2010s on Oahu was associated with a much sharper rise in lodging costs which, in turn, induced a reduction in domestic visitor average lengths of stay.

Sources: Hawaii Tourism Authority, Hawaii DBEDT, Hospitality Advisors LLC, Bureau of Labor Statistics, Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org/series/AEXJPUS); seasonal adjustment, deflation using Honolulu CPI-U (quarterly interpolation from semiannual data and annual averages, as appropriate) by TZE.
Oahu *domestic* visitor average stay length declined 1 day 2012-2017, other lengths largely unchanged: *somebody* had to give up a day

Average length of stay in days, seasonally-adjusted

Sources: Hawaii Tourism Authority, Hawaii DBEDT; calculated by TZE through mid-2017
Real Hawaii expenditure per visitor (s.a.) down from $2,000 to $1,800 (constant 2017$), recovering through 2012 but slipping thereafter

Sources: Hawaii Tourism Authority, Hawaii DBEDT, Bureau of Labor Statistics; seasonal adjustment, deflation using core U.S. CPI-U by TZ Economics (excludes the impact of more volatile food and energy sources of consumer price inflation) through 2017.
Capacity-constrained Oahu got higher room rates, shorter stays, strong dollar; Neighbor Isles have more rooms, mainland tourists

Sources: monthly data from Hawaii Tourism Authority, Hawaii DBEDT (http://dbedt.hawaii.gov/economic/mei), Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org/series/CPILFESL); seasonal adjustment and deflation by TZE
Real visitor expenditure, aligned to visitor arrivals in early-20-teens, felt drag of strong dollar, crowding on Oahu as expansion progressed.

Monthly, billion 2017$, s.a. (log scale)

Real tourism receipts
(Billion 2017$, left scale)

Total visitor arrivals
(right scale)

Sources: monthly data from Hawaii Tourism Authority, Hawaii DBEDT (http://dbedt.hawaii.gov/economic/mei), Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org/series/CPILFESL); seasonal adjustment and deflation by TZE.
Musical rooms (on Oahu) + foreign currency depreciation

- At effective full utilization (85 percent), Oahu room rates jumped, mainland visitors reduced stay length by 1 day: more seats, more visitors, but not any more dollars

- Foreign currency depreciation reduced international visitor outlays—they came to Hawaii with ability to pay in their currency, but prices are denominated in ours

- Tourism strategy: “drive visitors to the Neighbor Islands” (fly them)—works fine until they start running out of room, and is that at 85 percent occupancy? 80 percent?

Wait a few years and find out?
Pau
Appendix 1: canonical Neoclassical proof of gains from trade—consider first autarkic equilibrium “self-sufficiency” (no trade)

Autarkic, “self-sufficient” relative price of non-tourism is higher

Non-Tourism

Tourism
Open economy trade at world prices enables exporting based on comparative advantage; production shifts towards exportables.

Autarkic, “self-sufficient” relative price of non-tourism is higher.

World relative price of non-tourism is lower.
Consuming more than can be produced domestically in autarky, trading at world prices, unambiguously raises social welfare.

Autarkic, “self-sufficient” relative price of non-tourism is higher

World relative price of non-tourism is lower
Trade enables Potential Pareto Improvement: gains could be redistributed to ensure no one worse off, at least one better off

Non-Tourism

Exports of tourism goods/services

\[(T_1^P - T_1^C) > 0\]

Imports of non-tourism goods/services

\[(N_1^P - N_1^C) < 0\]

Welfare improvement

\[(U_1 - U_0) > 0\]

\[E_0 \rightarrow E_1 : \text{Autarky} \rightarrow \text{Open economy}\]

Autarkic, “self-sufficient” relative price of non-tourism is higher

\[\left(-\frac{p_T}{p_N}\right)_0\]

World relative price of non-tourism is lower

\[\left(-\frac{p_T}{p_N}\right)_1\]

Exports

\[T_0 \text{ to } T_1^C \text{ to } T_1^P\]

Imports

\[N_0 \text{ to } N_1^C \text{ to } N_1^P\]

Tourism
Trade model extension to n-space (tourism, non-tourism, environment, culture, etc.) extending proof of optimality if externalities corrected

- Demonstration of unambiguous gains from trade in 2-space requires convexity of production and consumption sets (absence of externalities; all costs explicit): *e.g.* no “missing markets” for natural resource services (watershed, *etc.*), *etc.*

- Laws of diminishing marginal productivity and diminishing marginal utility are *necessary and sufficient* conditions for the proof of general equilibrium, yielding the concave curvature to production possibilities and preference level sets (as shown)

- Social welfare: a competitive equilibrium (CE) is a Pareto Optimum (PO); any PO can be supported by a CE with a suitable lump-sum transfer of the endowment

- In n-space (“hyperspace”), convexity is less assured because of external effects—uncompensated, unintended positive or negative side effects: “world prices” are a separating hyperplane and because of nonconvexities (*e.g.* environmental externalities) a CE may *not* be a PO, but any PO still can be supported by a CE with a suitable lump-sum transfer of the endowment (“correcting for the externalities”)
Appendix 2: Long-run Hawaii tourism: visitor arrivals, 1922-2017

Appendix 3: lodging capacity constraints as a housing problem: rising to 3 visitors / unit / day, crowding raises “housing” costs

Hawaii visitors per available lodging unit per day

Sources: Hawaii Visitors Bureau, Hawaii DBEDT, Hawaii Tourism Authority; calculated by TZE as total visitor days divided by contemporaneous visitor plant inventory total, divided by 365.25